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IN DEPTH

NAD+ Metabolism in Cardiac Health, Aging,  
and Disease
Mahmoud Abdellatif , MD, PhD; Simon Sedej , PhD; Guido Kroemer , MD, PhD

ABSTRACT: Nicotinamide adenine dinucleotide (NAD+) is a central metabolite involved in energy and redox homeostasis as 
well as in DNA repair and protein deacetylation reactions. Pharmacological or genetic inhibition of NAD+-degrading enzymes, 
external supplementation of NAD+ precursors, and transgenic overexpression of NAD+-generating enzymes have wide 
positive effects on metabolic health and age-associated diseases. NAD+ pools tend to decline with normal aging, obesity, and 
hypertension, which are all major risk factors for cardiovascular disease, and NAD+ replenishment extends healthspan, avoids 
metabolic syndrome, and reduces blood pressure in preclinical models. In addition, experimental elevation of NAD+ improves 
atherosclerosis, ischemic, diabetic, arrhythmogenic, hypertrophic, or dilated cardiomyopathies, as well as different modalities 
of heart failure. Here, we critically discuss cardiomyocyte-specific circuitries of NAD+ metabolism, comparatively evaluate 
distinct NAD+ precursors for their preclinical efficacy, and raise outstanding questions on the optimal design of clinical trials 
in which NAD+ replenishment or supraphysiological NAD+ elevations are assessed for the prevention or treatment of major 
cardiac diseases. We surmise that patients with hitherto intractable cardiac diseases such as heart failure with preserved 
ejection fraction may profit from the administration of NAD+ precursors. The development of such NAD+-centered treatments 
will rely on technological and conceptual progress on the fine regulation of NAD+ metabolism.
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Nicotinamide adenine dinucleotide (NAD) is essen-
tial for the metabolism of eukaryotic cells. The 
capacity of NAD to shuttle electrons between its 

oxidized (NAD+) and reduced (NADH) forms is indis-
pensable for oxidation-reduction reactions that capture 
or liberate cellular energy in the form of ATP. Beyond its 
role in energy metabolism, NAD+ has also been recog-
nized as a pivotal signaling molecule and a rate-limiting 
substrate of multiple enzymes involved in DNA repair, 
epigenetic regulation, posttranslational modifications, 
and metabolic adaptation to changing nutritional states.1

Over the period of the last decade, a growing reper-
toire of studies transformed our understanding of NAD+ 
biology and its pathophysiological implications.2,3 In this 
regard, experimental strategies for NAD+ repletion can 
delay several hallmarks of aging and simultaneously 
suppress the manifestation of age-related diseases in 
rodent models.4–7 On the basis of these observations, 
NAD+ precursors harbor promise as antiaging drugs, 

igniting renewed interest in the metabolism and pleiotro-
pic action of NAD+. However, in spite of the accumulating 
preclinical evidence in favor of the broad health-improv-
ing effects of NAD+ enhancers,8–10 only few clinical trials 
have been performed in humans.

In the context of cardiovascular morbidity, emerging 
preclinical evidence indicates that increasing cellular 
NAD+ content might represent a promising therapeu-
tic avenue.11–13 In support of this idea, disrupted NAD+ 
metabolism is increasingly considered as an amendable 
cardiovascular risk factor.6,14 In fact, the pathogenesis 
of various chronic cardiovascular diseases has been 
consistently shown to coincide with perturbations of 
NAD+ homeostasis.15–17 The cardiovascular system is 
particularly vulnerable to such dysregulation in NAD+ 
metabolism because of the high energy demand of 
the heart.18 Specifically, depletion of intracellular NAD+ 
impairs mitochondrial fatty acid β-oxidation and oxida-
tive phosphorylation, underscoring that adequate NAD+ 
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availability is critical for the maintenance of myocardial 
bioenergetic efficiency and, thus, normal pump func-
tion. Diminution of the cardiovascular NAD+ pool below 
a critical threshold also entails major dysfunctions at 
the cellular level. These include, but are not limited 
to, deregulated nutrient sensing, epigenetic and gene 
dysregulation, autophagy impairment, and low-grade 
inflammation, all of which can independently fuel the 
development of cardiovascular disease.1

In this in-depth review, we discuss the current under-
standing of NAD+ metabolism, and how impaired NAD+ 
homeostasis aggravates common cardiometabolic risk 
factors, thus favoring cardiovascular morbidity. We 
then delve into the therapeutic potential of different 
NAD+-based therapies against prevalent cardiovas-
cular maladies, ranging from ischemic, hypertrophic, 
arrhythmogenic, diabetic, and dilated cardiomyopathies 
to heart failure. Last, we present unfolding clinical evi-

dence in favor of the utility of NAD+ precursors in car-
diovascular medicine.

NAD+ METABOLISM IN THE HEART AND 
CIRCULATION
Cardiomyocytes accumulate NAD+ mostly within their 
mitochondria,19 where the bulk of cellular oxidation-re-
duction reactions occur. However, NAD+ is also present 
in the cytosol and nucleus, where NAD+-derived metabo-
lites and NAD+-dependent enzymes contribute to various 
cellular functions.1 In recent years, significant progress 
has been made in the understanding of tissue-specific 
NAD+ synthesis, transport, and catabolism.

NAD+ Biosynthesis
Although the liver and, to a lesser extent, the kidney can 
synthesize NAD+ from the amino acid tryptophan through 
the kynurenine pathway, the majority of organs, including 
the heart, lack the enzymes necessary for the de novo 
biosynthesis of NAD+ (Figure 1A). Instead, cardiac cells 
generate NAD+ from preformed pyridine moieties such 
as nicotinamide. Nicotinamide is intracellularly available 
as an end-product of nonoxidative NAD+ catabolism and, 
thus, represents a readily available substrate for NAD+ 
production by NAMPT (nicotinamide phosphoribosyl-
transferase), the main rate-limiting enzyme in the NAD+ 
salvage pathway (Figure 2). However, intracellular recy-
cling of NAD+ is not unlimited, because nicotinamide is 
also regularly metabolized and excreted in urine. There-
fore, dietary intake of NAD+ precursors, such as nico-
tinamide, nicotinic acid (NA), and nicotinamide riboside 
(NR)—collectively known as vitamin B3—is required to 
sustain organismal NAD+ homeostasis. These NAD+ pre-
cursors are intracellularly converted to NAD+ through the 
amidated or deamidated pathways (Figure 2). Explicitly, 
NAMPT and NMRKs (NR kinases) convert nicotinamide 
and NR, respectively, into nicotinamide mononucleotide 
(NMN) via the amidated pathway, whereas NA enters the 
deamidated pathway to form NA mononucleotide. Both 
NMN and NA mononucleotide are subsequently used as 
substrates for NAD+ production in the reaction catalyzed 
by NMN adenylytransferases.

Different NAD+ precursors might vary in their efficacy to 
replenish NAD+, both in a tissue- and context-dependent 
manner. With respect to the human heart, gene expression 
data (Figure 1A) indicate that NAD+ biosynthetic enzymes 
of the amidated pathway are much more abundant than 
those of the deamidated pathway. Indeed, the amidated 
pathway accounts for 99.3% of cardiac NAD+ stores.20 The 
protein expression of NMRKs and NAMPT appears to be 
highly context-dependent. Under physiological conditions, 
NMRKs are not detectable by protein  immunoblotting,21 
suggesting that NAMPT might be the sole rate-limiting 
enzyme for NAD+ biosynthesis expressed in the healthy 

Nonstandard Abbreviations and Acronyms

cADPR cyclic ADP-ribose
CD38 cyclic ADP-ribose synthase
CD73 ecto-5’-nucleotidase
DCM dilated cardiomyopathy
FXN frataxin encoding gene
HFpEF  heart failure with preserved ejection 

fraction
HFrEF  heart failure with reduced ejection 

fraction
I/R ischemia/reperfusion
Lmna lamin A/C encoding gene
L-NAME N-nitro-l-arginine methyl ester
Me-NAM methyl-nicotinamide
NA nicotinic acid
NAD+  nicotinamide adenine dinucleotide, 

oxidized form
NADH  nicotinamide adenine dinucleotide, 

reduced form
NAM nicotinamide
NaMN nicotinic acid mononucleotide
NAMPT nicotinamide phosphoribosyltransferase
NMN nicotinamide mononucleotide
NMNAT  nicotinamide mononucleotide 

adenylytransferase
NR nicotinamide riboside
NRK nicotinamide riboside kinase
PARP poly(ADP-ribose) polymerase
PBMCs peripheral blood mononuclear cells
PKC protein kinase C
SIRT sirtuin deacetylase
SRF serum response factor
TAC transverse aortic banding
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Figure 1. Gene expression levels of the enzymes involved in NAD+ metabolism.
Shown are the relative gene expression levels of the enzymes involved in (A) the deamidated and amidated pathways of NAD+ biosynthesis as 
well as (B) those involved in NAD+ catabolism in the heart and other organs/tissues. The data were retrieved from The Human Protein Atlas 
(http://www.proteinatlas.org/) and subsequently subjected to hierarchical clustering in Morpheus (https://software.broadinstitute.org/morpheus). 
Data not available in the atlas are represented by gray boxes. NAD+ indicates nicotinamide adenine dinucleotide, oxidized form.
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heart. Hence, it is conceivable that nicotinamide is the 
primary source of cardiac NAD+ under physiological con-
ditions, especially because nicotinamide is the most abun-
dant NAD+ precursor in the circulation (2000 nmol/L of 
nicotinamide versus 7 nmol/L of NR).21,22 In support of this 
notion, acute NR administration fails to increase cardiac 
NAD+ content in healthy mice, contrasting with its ability 
to enhance hepatic NAD+ levels.23 By contrast, dilated car-
diomyopathy (DCM) is associated with reduced NAMPT 
expression and NMRK upregulation, and thus, NR effec-
tively replenishes cardiac NAD+.16,24,25

NAD+ Transport and Delivery
NAD+ cannot cross the plasma membrane by passive dif-
fusion because of its hydrophilicity, positive charge, and 
molecular size. Therefore, mammalian cells import NAD+ 
precursors for intracellular NAD+ synthesis.26 Among 

these, nicotinamide and NA are the smallest and most 
membrane-permeant molecules.26–28 NR is transported 
into cells through the equilibrative nucleoside trans-
porter family members.29 As for NMN, initial evidence 
suggested that it must be dephosphorylated to NR by 
NT5E (ecto-5’-nucleotidase, best known as CD73) be-
fore entering the cell. In fact, deletion of NMRKs, which 
are required for NR conversion to NAD+, limits the abil-
ity of NMN to elevate intracellular NAD+ levels.21,30 More 
recently, however, the cation/chloride cotransporter 
SLC12A8 has been recognized as a specific (intesti-
nal) NMN transporter.31 Hence, future in vivo studies are 
required to further clarify the transport mechanisms of 
NAD+ and its precursors in the cardiovascular system, 
including the recently discovered mammalian mitochon-
drial NAD+ transporter, SLC25A51/MCART1.32–34

Another area of intense investigation concerns the 
biochemical conversions that NAD+ precursors undergo 

Figure 2. Biosynthetic pathways of NAD+.
Because the heart lacks the enzymes necessary for the de novo biosynthesis of NAD+ from the amino acid tryptophan (Trp), cardiac cells instead 
salvage NAD+ from preformed pyridine moieties, such as nicotinamide (NAM), nicotinic acid (NA), or nicotinamide riboside (NR)—collectively 
known as vitamin B3. These NAD+ precursors are metabolized to NAD+ through the amidated pathway, where NAM phosphoribosyltransferase 
(NAMPT) and NR kinases (NMRKs) convert NAM and NR, respectively, into nicotinamide mononucleotide (NMN), whereas NA is introduced 
to the Preiss-Handler pathway to form NA mononucleotide (NaMN). Both NMN and NaMN are subsequently used as substrates for NAD+ 
production in the reaction catalyzed by NMN adenylytransferase (NMNAT). Highlighted in dark color are the enzymes and precursors that 
are sufficiently expressed in the heart (Figure 1A). 3-HAA indicates 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; ACMS, 2-amino-
3-carboxymuconate-6-semialdehyde; CD73, ecto-5′-nucleotidase; HAAO, 3-hydroxyanthranilic acid dioxygenase; IDO, indoleamine-2,3-
dioxygenase; KFase, kynurenine formamidase; KMO, kynurenine 3-monooxygenase; KYN, kynurenine; KYNU, kynureninase; NAAD, NA adenine 
dinucleotide; NAD+, nicotinamide adenine dinucleotide, oxidized form; NADS, NAD synthetase; NAPRT, NA phosphoribosyltransferase; NFK, 
N-formylkynurenine; QA, quinolinic acid; QPRT, quinolinate phosphoribosyltransferase; and TDO, tryptophan-2,3-dioxygenase.
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in vivo before they reach the heart or other peripheral 
tissues. Recent reports suggest that orally administered 
NAD+ precursors are subjected to extensive first-pass 
metabolism in the gastrointestinal tract, liver, and later 
on in the circulation.22,35 Stable isotope tracing revealed 
that both nicotinamide and NR are converted by the gut 
microbiota into NA, which is subsequently incorporated 
into the intestinal and hepatic NAD+ pools through the 
deamidated pathway.35 In fact, detectable NAD+ metab-
olites in the circulation appeared to be generated from 
both the deamidated and amidated pathways, indicating 
that oral nicotinamide and NR supplementation stimulates 
both pathways in vivo. Another mouse study reported that 
orally delivered NR and NMN are almost entirely con-
verted to nicotinamide before reaching the circulation.22 
Other studies also reported that intraperitoneal injection 
of NR and NMN is followed by a surge in the circulating 
levels of nicotinamide.21,23,36 Even intravenous administra-
tion of NR and NMN results within minutes in a substan-
tial increase in nicotinamide plasma levels, suggesting an 
instantaneous conversion of NR and NMN into nicotin-
amide within the extracellular space.22 In support of this 
notion, NR is quickly degraded to nicotinamide when 
added to murine plasma in vitro,21 whereas intravenously 
injected NMN is barely detectable in the circulation.22 
Although these findings indicate that different NAD+ 
precursors are converted into nicotinamide, available evi-
dence argues against the idea that all these molecules 
exert identical effects. For instance, as opposed to nico-
tinamide, NR efficiently restores NAD+ levels and cardiac 
function in genetic models of DCM.24 On the flip side, NR 
failed to improve human skeletal muscle mitochondrial 
defects,37 whereas NA convincingly restored NAD+ levels 
and improved mitochondrial myopathy in patients.38

Taken together, the metabolism of NAD+ precursors 
appears to be much more complex than initially antici-
pated, especially in extrahepatic tissues. Hence, system-
atic studies should perform head-to-head comparisons 
of different NAD+ precursors with respect to their galenic 
and disease-specific properties.

NAD+ Consumption
Steady-state levels of NAD+ are determined not only 
by its biosynthesis but also by the rate of its utilization. 
Three classes of enzymes, SIRTs (the sirtuin family of 
deacetylases), PARPs (poly(ADP-ribose) polymerases), 
and cADPR (cyclic ADP-ribose) synthases, are known to 
consume NAD+, resulting in its net catabolism to nicotin-
amide (Figure 3).

Mammalian SIRTs are composed of a family of 7 mem-
bers (SIRT1–7), which are operative in different cellular 
compartments, including the nucleus (SIRT1, SIRT6, and 
SIRT7), cytoplasm (SIRT2), and mitochondria (SIRT3, 
SIRT4, and SIRT5). Sirtuins are energy sensors that use 
NAD+ as a cosubstrate to regulate cellular metabolism.39 

However, the Michaelis constant values of different sirtu-
ins vary significantly,2 indicating that NAD+ concentration 
does not equally affect the activity of different sirtuins. 
Indeed, SIRT2, SIRT4, SIRT5, and SIRT6 operate at sub-
physiological Michaelis constant values, and thus, their 
activity is not rate-limited by NAD+, whereas SIRT1 and 
SIRT3 are highly dependent on NAD+ bioavailability.2 In 
fact, available evidence indicates that NAD+-replenishing 
interventions mediate many of their effects in the car-
diovascular system through an increase in the activity of 
SIRT1 and SIRT3.40

At variance with sirtuins, all PARPs are active at 
rather low levels of NAD+; however, under conditions 
of increased DNA damage, PARPs may consume sig-
nificant amounts of NAD+, which then become rate-lim-
iting.22,41 The PARP family is composed of 16 enzymes 
in mice and 17 in humans, among which PARP1 and 
PARP2 are considered key DNA damage responders, 
and thus are required for DNA repair and stability. In con-
trast, little is known about the function of other PARP 
family members, as well as their contribution to global or 
compartment-specific NAD+ consumption.

Another class of NAD+-consuming enzymes is con-
stituted by the cyclic ADP-ribose synthases, including 
CD38 and its homolog BST1 (bone marrow stromal cell 
antigen 1, best known as CD157). These ectoenzymes 
are mainly expressed by immune cells and apparently 
consume significant amounts of NAD+ to the extent 
that they are also referred to as NADases.42 Although 
under normal conditions, high expression of CD38 
is only evident in tissues with abundant immune cell 
populations (Figure 1B), aging and pathological condi-
tions associated with elevated immune cell infiltration 
cause higher expression of CD38 in various tissues.43,44 
Notably, cADPR—the product of NAD+ consumption by 
CD38—is known to regulate calcium homeostasis, and 
thus might affect cardiomyocyte excitation-contraction 
coupling.45

Taken together, different enzymes consume NAD+ at 
different rates and in a cell type- and context-dependent 
fashion. Although most of the NAD+-using enzymes are 
expressed in the heart (Figure 1B), their relative contri-
bution to net cardiac NAD+ catabolism remains to be 
elucidated. To this end, for a comprehensive overview 
of the (patho-)physiological cardiovascular role of these 
enzymes, we refer the readers to excellent reviews focus-
ing on sirtuins,14,40,46,47 PARPs,48,49 or CD38.50

NAD+ AND CARDIOVASCULAR RISK 
FACTORS
Epidemiological as well as preclinical studies suggest 
that old age and obesity are among the most important 
factors that erode health at all levels, including in the car-
diovascular system.51,52
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NAD+ Dysregulation in Aging
Intracellular NAD+ concentrations decline with age in var-
ious tissues and species, including in humans.10,42–44,53–56 
Specifically in the heart, the decline in NAD+ content 
varies significantly between species and studies, report-
ing a 0% to 65% reduction in 2-year-old rodents.57–59 
Steady-state NAD+ concentration might decline because 
of a progressive decay in NAD+ biosynthesis, increased 
activity of NAD+ degradation enzymes, or a combina-
tion of both. On NAD+ biosynthesis, downregulation of 
NAMPT has been implicated in the age-related decline 
of NAD+ concentration. However, although this has been 
documented for multiple tissues/organs,60 it is still un-

known whether this also occurs in the heart. Alternatively, 
the age-related decline in circulating levels of extracel-
lular NAMPT that was documented in mice and humans 
might indirectly affect systemic NAD+ levels.56

A growing body of evidence implicates CD38 as a 
major culprit in age-related NAD+ decline in mam-
mals.42–44 Thus, CD38-deficient aged mice exhibit 
increased NAD+ content in various tissues.42 Similarly, a 
specific CD38 inhibitor reverses age-related NAD+ deg-
radation and improves several aspects of health, includ-
ing cardiac function in aged mice.57 It is interesting that 
inhibiting CD38 was found to increase NAD+ through an 
NMN-dependent mechanism, suggesting that in addition 

Figure 3. NAD+ catabolic pathways.
After their uptake, NAD+ precursors are converted to NAD+ in different subcellular compartments including the mitochondria, cytosol, and 
nucleus. Accordingly, generated NAD+ controls cellular redox reactions, but also NAD+-dependent enzymes. The latter are responsible for the net 
catabolism of NAD+ and are composed of 3 classes: SIRTs (the sirtuin family of deacetylases), PARPs (poly(ADP-ribose) polymerases), and the 
cADPRs (cyclic ADP-ribose) synthases. In addition, SARM1 (sterile α and Toll/interleukin-1 receptor motif-containing 1) has an intrinsic NADase 
activity, thereby cleaving NAD+ and producing NAM as an end product. ETC indicates electron transport chain; NAD+, nicotinamide adenine 
dinucleotide, oxidized form; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NMN, nicotinamide mononucleotide; NMNAT, 
nicotinamide mononucleotide adenylytransferase; NR, nicotinamide riboside; and TCA, tricarboxylic acid cycle. This figure was created with 
BioRender.com.
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to NAD+, NMN is an alternative substrate for CD38.43 
Indeed, because of its unique cellular localization with 
the catalytic site toward the extracellular space, CD38 
exhibits an ectoenzymatic activity that degrades circulat-
ing NMN in vivo.42 As such, coadministration of NAD+ 
precursors and CD38 antagonists might be more effi-
cacious than CD38 inhibition alone for delaying cardiac 
aging.57 Because CD38 is predominantly expressed in 
immune cells,61 it might contribute to a variable extent to 
the decline of NAD+ content, depending on the abundancy 
of tissue-resident immune cells.57 Indeed, the progres-
sive accumulation of senescent cells that secrete proin-
flammatory cytokines has been shown to elevate CD38 
tissue levels and hence to promote the age-associated 
diminution of NAD+ and NMN.43,44 Because murine and 
human cardiomyocytes are subjected to senescence,62 
it is plausible that CD38 might be also involved in the 
age-related NAD+ decline in the heart, despite the seem-
ingly negligible transcriptional expression of CD38 under 
baseline/healthy conditions (Figure 1B).

PARPs reportedly consume NAD+ to repair age-related 
DNA damage in aging tissues.63 By contrast, PARP inhi-
bition replenishes NAD+ in aged organisms and prevents 
premature aging caused by deficient DNA repair in sev-
eral mouse models.41,64,65 In the myocardium, maintain-
ing DNA stability is crucial for normal cellular functions, 
especially in the postmitotic cardiomyocytes. Given their 
limited regenerative capacity,66 these long-lived cells are 
exposed to accumulating metabolic and oxidative dam-
age throughout their lifetimes, which ultimately causes 
DNA damage and PARP activation, thereby reduc-
ing NAD+ concentration in the aging heart.58 Activated 
PARPs might consume significant amounts of NAD+ to 
fuel the DNA surveillance and repair machinery. However, 
in the case of genotoxic stress and metabolic collapse 
caused by excessive DNA damage and NAD+ depletion, 
respectively, excessive PARP activation might ignite cell 
death pathways, as reported for a mouse model of heart 
failure induced by pressure overload.67

Exogenous NAD+ supplementation or overexpression 
of either NAMPT or NMN adenylyltransferase restores 
cellular NAD+ levels and prevents cardiac myocyte death 
in vitro,67 suggesting that increased NAD+ bioavailability 
or synthesis can counterbalance increased NAD+ con-
sumption. In support of this notion, late-in-life dietary 
intake of nicotinamide delays the hallmarks of cardiac 
aging in C57BL/6 mice, including reduced cardiac 
hypertrophy and diastolic dysfunction.15 Along similar 
lines, oral NMN supplementation to aged mice elicits 
geroprotective effects on the vasculature by improv-
ing aortic stiffness in association with increased arterial 
SIRT1 activation and reduced vascular oxidative stress.68 
Another study reported improved cerebromicrovascular 
circulation and neurovascular coupling in NMN-treated 
aged mice.69 Several extracardiac metabolic benefits 
were also reported for aged mice treated with NMN, nic-

otinamide, or NR.9,60,70 Intriguingly, the benefits of NAD+ 
precursors on mammalian healthspan do not necessar-
ily correlate with parallel gains in lifespan.9,71 However, a 
report suggested that late-in-life NR administration mod-
estly extends longevity.10

Taken together, a large body of evidence supports 
that NAD+-regenerative strategies have a large antiag-
ing potential that extends to the cardiovascular system. 
However, supraphysiological levels of cardiac NAD+ are 
not necessarily advantageous, because embryonic over-
expression of NAMPT reportedly leads to cardiac hyper-
trophy in young (6-month-old) mice.72 NAD+ precursors 
are likely to be beneficial because they avoid the age-
related NAD+ overconsumption caused by inflamma-
tion (CD38) and DNA damage (PARP1). This assertion 
has been recently substantiated in an elegant study by 
McReynolds and colleagues.59 The authors performed 
NAD+ flux measurements in 25-month-old mice, reveal-
ing that a modest and tissue-specific decline in NAD+ 
is explained by increased NAD+ degradation rather than 
impaired NAD+ production.59

NAD+ Dysregulation in Obesity
Similar to other cell types, the energy state of cardio-
myocytes is reflected by the cellular NAD+/NADH ratio, 
and the failure to maintain the NAD+ pool is sufficient 
to cause metabolic imbalance, energy deficit, and func-
tional decompensation.73 In this context, it is important 
to note that the metabolic changes that occur in car-
diac NAD+ metabolism depend not only on the severity 
of the cardiomyopathy but also on the comorbidities, in 
particular obesity, diabetes, and hypertension.73 A plau-
sible explanation for how obesity might induce NAD+ 
decline resides in the associated subclinical inflamma-
tory state.74 Such a sterile (systemic) inflammation might 
downregulate NAMPT expression, thereby reducing the 
NAD+ salvage pathway activity in multiple tissues and 
organs,60 and possibly also the heart. In support of this 
hypothesis, mice with reduced NAD+ content in their 
fat depots because of adipocyte-specific NAMPT dele-
tion display local (adipose tissue) inflammation but also 
a severe multiorgan insulin resistance with a 50% re-
duction of insulin-induced glucose uptake in the heart, 
which can be rescued with NMN.75 Consistently, intra-
peritoneal injection of NMN stimulates NAD+ biosyn-
thesis that can reinstate blood glucose control in obese 
wild-type mice,60 and in mice with systemic Nampt hap-
lodeficiency.76 Other studies using alternative NAD+ 
precursors, including nicotinamide and NR, have sub-
stantiated such metabolic benefits.9,77–79 Intriguingly, 
nicotinamide-mediated metabolic benefits associate 
with increased, not decreased, SIRT1 expression.9,79 
This observation has been reproduced in the heart,15 
and is likely mediated by methyl-nicotinamide–induced 
inhibition of SIRT1 proteolysis.80
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Besides stimulating NAD+ biosynthesis, targeting 
NAD+ degradation pathways may improve several physi-
ological and metabolic aspects of diet-induced obesity. 
For example, mice with Parp1 or Cd38 deficiency, and 
mice treated with PARP or CD38 inhibitors, exhibit 
improved glucose and lipid homeostasis,42,57,64,81,82 as 
well as exercise capacity.83 Increased NAD+ content 
in response to these interventions correlates with an 
increased deacylase activity of SIRT1 and SIRT3 that 
results in enhanced mitochondrial biogenesis, oxidative 
phosphorylation, and energy expenditure.42,64 Moreover, 
the elevation of intracellular NAD+ levels occurring after 
CD38 deletion protects the mouse heart from high-fat 
diet (HFD)–induced oxidative stress via activating the 
SIRT3/FOXO3-mediated antioxidative stress pathway.84

NAD+ Dysregulation in Hypertension
Considering that hypertension is intimately linked to ag-
ing and obesity, which both are associated with NAD+ 
deficiency, NAD+ metabolism has emerged as a poten-
tial therapeutic target for hypertension. Indeed, NAMPT 
expression was found to be downregulated in clinical 
and experimental hypertension.85 In contrast, systemic 
NAMPT overexpression protected mice from angio-
tensin II–induced hypertension.85 Along the same lines, 
 increased NAD+ biosynthesis upon nicotinamide supple-
mentation lowers systolic blood pressure in N-nitro-L-ar-
ginine methyl ester–treated mice, eNOS–/– mice, and Dahl 
salt-sensitive rats.15,86 Although the precise mechanisms 
underlying such antihypertensive nicotinamide effects are 
elusive, reduced inflammation has been suggested to be 
involved.86 Taking into account that nicotinamide is gener-
ally regarded safe in humans, it merits further evaluation 
as an adjuvant therapy of hypertension. Indeed, a recent 
pilot study showed that supplementation of the alternative 
NAD+ precursor NR for 6 weeks causes a mild reduction 
in blood pressure and aortic stiffness in healthy middle-
aged and older adults.87 Future trials must examine the 
effects of NAD+ on patients with hypertension in whom 
the reduction of blood pressure might be more important.

TARGETING NAD+ METABOLISM 
IN EXPERIMENTAL MODELS OF 
CARDIOVASCULAR DISEASE
As the interest in NAD+ metabolism increased, so did 
the number of studies that examined NAD+ and its pre-
cursors role in a wide range of cardiovascular disorders 
(Table 1).

Atherosclerotic and Other Vascular Diseases
NA (also commonly referred to as niacin) has long been 
known for its lipid-lowering ability.107 However, the ad-

dition of niacin to standard lipid-lowering therapy using 
statins failed to confer additional benefits to high-risk 
cardiovascular patients.108–110 Available preclinical evi-
dence on the role of NAD+ in atherosclerosis is also in-
conclusive. For example, pharmacological inhibition of 
systemic NAMPT activity evokes an atheroprotective 
effect in WT mice,111 whereas global overexpression of 
NAMPT exacerbates atherosclerosis in apolipoprotein 
E–deficient (ApoE–/–) mice.112 By contrast, leukocyte-
restricted overexpression of NAMPT effectively protects 
from Western diet–induced atherosclerotic plaques in 
low-density lipoprotein receptor–deficient (Ldlr–/–) mice, 
correlating with marked anti-inflammatory effects.113 In 
light of these inconsistent findings, future studies should 
explore the effects of cell type–specific overexpression 
or deletion of NAMPT on atherogenesis and hyperlip-
idemia.

Beyond its lipid-lowering action, NA exerts potent 
anti-inflammatory effects, including in human endothe-
lial and immune cells.114,115 Accordingly, NAD+ replen-
ishment using NA decreases immune cell infiltration 
and matrix degradation, leading to reduced forma-
tion of abdominal aortic aneurysms in mice subjected 
to calcium chloride or angiotensin II infusion.88 Nico-
tinamide, which arguably has no detectable lipid-low-
ering effect,116 also confers protective effects against 
abdominal aortic aneurysms.88 Nicotinamide-treated 
mice showed enhanced SIRT1 activity, and coadmin-
istration of the SIRT1 inhibitor EX527 abolished the 
vasoprotective effects of nicotinamide.88

Ischemic Cardiomyopathy
Early evidence obtained from experimental models of 
cardiac ischemia/reperfusion (I/R) indicates that cardiac 
NAD+ levels decline in response to I/R injury in mice and 
dogs.89,90,117 It is interesting that myocardial NAD+ defi-
ciency in dogs was evident in both ischemic and nonisch-
emic cardiac regions, whereas restoring NAD+ levels by 
intravenous administration of NAD+ improved myocardial 
bioenergetics.89,90 In mice, myocardial NAD+ depletion is 
detectable as early as 15 minutes after I/R. By contrast, 
genetic ablation of PARPs preserves myocardial NAD+ 
content, restricts myocardial infarct size, and attenuates 
the resulting proinflammatory response.117 Along simi-
lar lines, CD38-deficient mice, which have a preserved 
NAD+ pool, are resistant to myocardial ischemia and 
I/R injuries.118–120 Pharmacological inhibition of CD38 
also suppresses I/R-induced myocardial infarction and 
promotes recovery of cardiac function.121 Consistently, 
aminobenzamide (3-AB), a pharmacological PARP in-
hibitor, reproduces such cardioprotective effects in rats 
subjected to I/R or myocardial infarction.122,123 However, 
extended PARP inhibition reverts these benefits, per-
haps because of the suppression of PARP-dependent 
DNA repair.124
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Table 1. List of Cardiovascular Disorders for Which There Is Direct Preclinical Evidence for the Therapeutic Potential of 
Increased NAD+ Biosynthesis

Condition Intervention/dosage Animal model Effects Proposed mechanisms
Refer-
ence

Aortic  
aneurysm

Niacin (0.3% wt/vol in the drink-
ing water)

NAM (0.4% wt/vol in the drink-
ing water)

Mice subjected to calcium 
chloride or angiotensin II 
infusion

-  Decreased immune cell 
infiltration and matrix deg-
radation

-  Reduced abdominal aortic 
aneurysms formation

-  Reduced inflammation and SIRT1 
activation

-  Causality testing: coadministration of 
the SIRT1 inhibitor EX-527 abolished 
the vasoprotective effects of NAM

88

Ischemic 
cardiomy-
opathy

Cardiomyocyte-specific overex-
pression of NAMPT

A mouse model of myo-
cardial ischemia-reperfu-
sion injury

- Enhanced ATP levels

-  Attenuated apoptotic cell 
death

-  Reduced myocardial in-
farction size

- Improved bioenergetics

- Autophagy induction

17

NAD+ (0.5 mg/kg BW, IV) A dog model of myocar-
dial ischemia-reperfusion 
injury

-  Elevated myocardial con-
tent of creatine phosphate 
and ATP/ADP ratio

- Improved bioenergetics 89,90

NAD+ (10–20 mg/kg BW, IV) A rat model of myocardial 
ischemia-reperfusion in-
jury (in vivo or ex vivo)

-  Reduced accumulation of 
ischemic succinate

- Reduced infarct size (in vivo)

And cardiac dysfunction 
(ex vivo)

- Reduced oxidative stress 91,92

NAD+ (20 mg/kg BW, IV) A swine model of myocar-
dial ischemia-reperfusion 
injury

-  Reduced measures of 
myocardial necrosis, fibro-
sis, and stiffness

-  Enhanced recovery of car-
diac function

- Reduced inflammation 93

NAM (enriched diet; 0.5 g/kg) A rat model of ex vivo 
myocardial ischemia-
reperfusion injury

-  Decreased myocardial 
infarction size

- Reduced oxidative stress (in vitro) 94,95

NR (100 mg/kg BW, oral  
gavage)

A mouse model of myo-
cardial ischemia-reperfu-
sion injury

-  Improved ejection fraction 
and reduced infarct size

Not available 96

NMN (100 mg/kg BW, injected 
IP every other day)

An aged rat model of ex 
vivo myocardial ischemia-
reperfusion injury

-  Restored NAD+/NADH 
ratio

- Reduced infarct size

- Preserved cardiac function

- Reduced mitochondrial membrane po-
tential and ROS levels

97

NMN (500 mg/kg BW, intraperito-
neal injected 30 min before isch-
emia induction or repeatedly during 
and within 24 h of reperfusion)

A mouse model of myo-
cardial ischemia reperfu-
sion injury

- Reduced infarct size

- Improved systolic function

-  SIRT1 activation and reduced FoxO1 
hyperacetylation

-  Causality testing: NMN failed to reduce 
the infarct size in SIRT1-KO mice

98

Diabetic car-
diomyopathy

Cardiomyocyte-specific overex-
pression of NAMPT

HFD-fed mice -  Reduced cardiac hypertro-
phy and fibrosis

- Improved diastolic function

-  Reduced oxidative stress through 
preserved NADPH/NADP+ and GSH/
GSSG+ ratios

- Autophagy induction

-  Causality testing: pharmacological 
inhibition of NAD kinase abolishes the 
cardioprotective effects of NAMPT 
overexpression

99

Streptozotocin-treated 
mice with cardiac-specific 
Ndufs4 knockout

-  Elevated NAD+/NADH 
ratio

- Restored cardiac function

- Reduced oxidative stress and protein 
hyperacetylation

100

Hypertro-
phic cardio-
myopathy

Cardiomyocyte-specific overex-
pression of NAMPT

A mouse model of isopro-
terenol-induced cardiac 
hypertrophy

-  Reduced cardiac hyper-
trophy

- Improved cardiac function

-  Restored NAD redox balance and 
reduced mitochondrial protein hyper-
acetylation

101

NAD+ (1 mg/kg BW daily, in-
fused from IP implanted osmotic 
pumps)

A mouse model of agonist 
(isoproterenol or angio-
tensin II)–induced cardiac 
hypertrophy

-  Reduced cardiac hypertro-
phy and fibrosis

-  Improved markers of heart 
failure, including ANP and 
BNP

- Activation of SIRT3

-  Causality testing: the anti-hypertrophic 
effect of NAD+ was absent in SIRT3-/-  
mice

102

(Continued )
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As an alternative to inhibiting NAD+-consuming 
enzymes, increasing NAD+ biosynthesis has emerged 
as a strategy for elevating NAD+. Indeed, mice with car-

diomyocyte-specific overexpression of NAMPT are pro-
tected from the cardiac decline in NAD+ and ATP pools, 
and show reduced myocardial infarction in vivo.17 In rats, 

NMN (500 mg/kg BW, IP every 
3 d)

A mouse model of isopro-
terenol-induced cardiac 
hypertrophy

-  Reduced hypertrophy and 
fibrosis

- Enhanced cardiac function

-  SIRT1 activation and reduced oxidative 
stress

-  Causality testing: the protective effects 
of NMN were partly antagonized by a 
SIRT1 inhibitor (sirtinol) in vitro

103

NAM (80 mg/L in the drinking 
water)

A rat model of arterio-
venous fistula-induced 
volume overload

- Reduced hypertrophy

-  Enhanced endothelial 
function and cardiac re-
laxation

- Reduced oxidative stress 104

Cardiomyocyte-specific overex-
pression of NAMPT

A mouse model of trans-
verse aortic constriction-
induced pressure 
overload

-  Failed to sustain myocar-
dial NAD+ content

-  No benefits on hypertro-
phy or fibrosis

-  Exacerbated cardiac dys-
function

Not available 105

NMN (500 mg/kg BW, IP every 
3 d)

A mouse model of trans-
verse aortic constriction-
induced pressure 
overload

- Reduced hypertrophy

-  Improved contractile func-
tion and no ventricular 
dilation

- Reduced lung congestion

- Restored NAD redox balance

and reversed mitochondrial protein hy-
peracetylation

101

NR (450 mg/kg BW daily, di-
etary supplementation)

A mouse model of trans-
verse aortic constriction-
induced pressure 
overload

- Partly preserved systolic 
function

Not available 16

Dilated car-
diomyopathy

NR (400 mg/kg BW daily, di-
etary supplementation)

Lmna mutant mice -  Enhanced cardiac con-
tractility, reduced wall 
thinning and attenuated 
ventricular dilation

- Improved survival

Not available 24

NR (400 mg/kg BW daily, di-
etary supplementation)

SRF mutant mice - Improved cardiac function

-  Reduced ventricular dila-
tion

-  Occur in absence of clear in vivo 
changes in NAD redox balance, 
mitochondrial respiration or protein 
acetylation

-  In vitro testing suggested increased 
glycolysis

16

NMN (500 mg/kg BW, IP twice 
weekly)

A mouse model of Fried-
reich’s ataxia cardiomy-
opathy

-  Improved load-indepen-
dent measures of cardiac 
contractility and compli-
ance

-  Improved myocardial bioenergetics and 
efficiency

-  Causality testing: SIRT3 ablation at-
tenuates the benefits of NMN in vivo

25

HFpEF NAM (450 mg/kg BW daily in 
the drinking water)

Male and female ZSF1 
obese rats with metabolic 
syndrome and HFpEF

- Reduced hypertrophy

-  Improved diastolic func-
tion, exercise and car-
diopulmonary functional 
capacity

- Reduced lung congestion

-  Improved myocardial and skeletal 
muscle bioenergetics due to rewiring of 
general metabolism.

-  Deacetylation of diastole-regulating 
proteins, namely titin and SERCA2a

15

NR (400 mg/kg BW daily, di-
etary supplementation)

A mouse model of HFpEF 
induced by HFD+L-
NAME

-  Reduced cardiac remod-
eling

-  Improved diastolic function 
and exercise capacity

- Reduced lung congestion

-  Improved mitochondrial fatty acid oxida-
tion through reduced VLCAD hyper-
acetylation

106

Pharmacological NAMPT acti-
vation by P7C3-A20 (10 mg/
kg BW, IP 5 times per week)

A mouse model of HFpEF 
induced by HFD+L-
NAME

- Improved diastolic function Not available 106

HFD indicates high-fat diet; HFpEF, heart failure with preserved ejection fraction; IP, intraperitoneal; IV, intravenous; L-NAME, N[w]-nitro-l-arginine methyl ester; 
NAD+, nicotinamide adenine dinucleotide, oxidized form; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NMN, nicotinamide mononucleotide; 
NR, nicotinamide riboside; SIRT, sirtuin deacetylase; and VLCAD, very long-chain acyl-CoA dehydrogenase.

Table 1. Continued

Condition Intervention/dosage Animal model Effects Proposed mechanisms
Refer-
ence
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intravenous injection of NAD+ reduces I/R-induced 
myocardial infarction in a dose-dependent manner.91 
Intraperitoneal injection of NAD+ also reduces cardiac 
dysfunction induced by I/R injury ex vivo, an effect that 
occurs in concert with reduced ischemic accumulation 
of succinate and reactive oxygen species.92 In a swine 
model of cardiac I/R, intravenous NAD+ injection before 
reperfusion significantly reduced signs of myocardial 
necrosis, fibrosis, and inflammation, ameliorated myo-
cardial metabolism, and promoted the recovery of car-
diac function.93 It is interesting that the cardioprotective 
effects of NAD+ are tied to the reactivation of autopha-
gic flux.17,125 However, whether this causally contributes 
to myocardial recovery from I/R in vivo remains to be 
tested. This is particularly important because autophagy 
reportedly plays a dual role in I/R.126,127

Dietary nicotinamide administration to mice decreased 
myocardial infarction in response to an ex vivo I/R pro-
tocol.94 This finding is intriguing considering that NAMPT 
is downregulated at the protein and mRNA levels in 
response to ischemia or I/R.17 Thus, despite reduced 
NAMPT expression, the NAD+ salvage pathway might, at 
least in part, preserve its activity.22 In fact, cardiac NAD+ 
levels appear to be only modestly reduced in haploin-
sufficient NAMPT mice, where NAMPT protein expres-
sion is reduced by 50%.17 Alternatively, oral nicotinamide 
administration might bypass NAMPT through microbi-
ota-mediated conversion to other precursors such as 
NA, which can regenerate NAD+ through the deamidated 
pathway.35 Further research using isotope tracing–based 
flux measurements and enzyme activity assays should 
explore these possibilities.

Oral administration of other NAD+ precursors also 
improves cardiac function and myocardial remodeling in 
mice subjected to I/R. For instance, mice treated with 
NR exhibit higher ejection fraction and smaller infarct 
size after I/R.96 Similarly, intraperitoneal injection of NMN 
to aged rats prevents the decline in the NAD+/NADH 
ratio in response to myocardial I/R ex vivo. NMN-treated 
rats also display smaller infarct size, preserved cardiac 
function, intact mitochondrial membrane potential, and 
reduced reactive oxygen species levels.97 Along similar 
lines, mice receiving NMN manifest restored myocardial 
NAD+ and cardioprotection against I/R in vivo.98 This 
positive effect is evident when NMN is injected before 
ischemia induction or later, during reperfusion. Of note, 
NMN failed to exert similar cardioprotective effects in 
SIRT1-deficient mice, indicating that SIRT1 might medi-
ate NMN-induced cardioprotection in I/R.98

Collectively, mounting preclinical evidence indicates 
that genetic and pharmacological interventions to sup-
plement NAD+ exert marked cardioprotective effects, 
not only against ischemia but also during subsequent 
reperfusion injury. Hence, it is tempting to speculate that 
patients with coronary artery syndrome—who are typically 
at increased risk of myocardial infarction—might benefit 

more from emerging NAD+-regenerative therapies than 
from niacin.

Diabetic Cardiomyopathy
Mice with HFD-induced diabetic cardiomyopathy have 
been recently shown to exhibit an impaired NAD redox 
balance and a lower ratio of reduced to oxidized form of 
nicotinamide adenine dinucleotide phosphate (NADPH/
NADP+), indicating reduced antioxidant detoxification.99 
In contrast, mice with cardiomyocyte-specific overexpres-
sion of NAMPT avoid HFD-induced oxidative stress and 
preserve normal ratios of NADPH/NADP+ and reduced 
to oxidized glutathione (GSH/GSSG). Furthermore, de-
spite unaltered weight gain and hyperglycemia, NAMPT 
overexpression protects HFD-fed mice from cardiac hy-
pertrophy, fibrosis, inflammation, and the cardinal sign of 
diabetic cardiomyopathy, diastolic dysfunction.99 Mecha-
nistically, pharmacological inhibition of NAD kinase, the 
enzyme that converts NAD+ to NADP+, abolished the car-
dioprotective effects of NAMPT overexpression. However, 
NAMPT heterozygous mice (which are particularly vulner-
able to diastolic dysfunction induced by HFD) showed no 
further deterioration in the NAD+/NADP+ ratio,99 suggest-
ing that the NAD+-to-NADP+ conversion cannot be the 
sole mechanism involved. In fact, in vitro experiments with 
cardiomyocytes revealed that SIRT1, but not SIRT3, is re-
quired for the protective effects of NAMPT.99 Furthermore, 
the redox imbalance of NAD and protein hyperacetylation 
might be involved, as demonstrated in mice lacking the 
mitochondrial complex I subunit (Ndufs4).100 In support of 
this notion, NAMPT overexpression restored the NAD+/
NADH ratio, reversed protein hyperacetylation, and pro-
tected Ndufs4 mice from diabetic cardiomyopathy.100

The inhibition of NAD+-consuming enzymes has been 
examined for the treatment of diabetic cardiomyopathy. 
For instance, the PARP1 inhibitor INO1001 was tested 
in angiotensin II–treated obese and diabetic leptin–
resistant (db/db) mice with diabetic cardiomyopathy.128 
PARP1 inhibition improved signs of cardiac hypertrophy, 
fibrosis, inflammation, and oxidative stress. Unfortunately, 
NAD+ amounts were not measured in this study, which 
nonetheless demonstrated that SIRT1 was required for 
the beneficial effects of INO1001, at least in vitro.128 
Regardless, in CD38-deficient mice, increased NAD+ 
levels coincide with enhanced cardiac metabolism and 
reduced oxidative stress on HFD feeding.84 Although 
functional cardiac phenotyping was not performed in 
these mice,84 preliminary data suggest improved diastolic 
function in HFD-fed mice with reduced CD38 activity.129

In sum, recent studies suggest that upregulation of 
NAD+ biosynthesis or reduction of its catabolism exert 
beneficial effects against diabetic cardiomyopathy. 
Future research efforts will need to follow a more trans-
lational approach using NAD+ precursors and address 
the question whether systemic NAD+ replenishment acts 
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through cardiomyocyte-autonomous or other cell non-
autonomous (likely extracardiac) effects to improve dia-
betic cardiomyopathy.

Arrhythmogenic Cardiomyopathies
Deranged cardiac metabolism in general, and perturbations 
of NAD+ metabolism in particular, may affect the func-
tion of cardiac ion channels. Mouse studies revealed that 
a reduced NAD+/NADH ratio alters the expression and 
conductance of cardiac sodium channel Nav1.5 through 
NADH-dependent protein kinase C activation.130–132 Con-
sistently, increased intracellular NADH reduces sodium 
currents in vitro and increases the risk of ventricular tachy-
cardia in wild-type mouse hearts ex vivo.131 Conversely, 
addition of NAD+ to isolated mouse hearts with Nav1.5 
channel haploinsufficiency reduces the risk of ventricular 
tachycardia.131 NAD+ administration also completely re-
stores sodium currents in hypertensive deoxycorticoste-
rone acetate (DOCA)-salt mice with nonischemic cardio-
myopathy, while improving conduction velocity in human 
failing hearts,133 indicating that the antiarrhythmic proper-
ties of NAD+ are clinically relevant.

In addition to the NAD redox state, NAD+-dependent 
enzymes may mediate the antiarrhythmic effects of 
NAD+. For instance, NAD+ modulates sodium current via 
SIRT1-dependent deacetylation of Nav1.5 channels both 
in vitro and in vivo.134 In line with this, cardiomyocyte-
specific SIRT1-deficient mice, which exhibit increased 
Nav1.5 acetylation, have decreased sarcolemmal expres-
sion of Nav1.5 channels, causing abnormalities in cardiac 
conduction and premature death through arrhythmia.134 
It is important to note that the arrhythmogenic pheno-
type of mice with cardiac SIRT1 deficiency recapitu-
lates human cardiac arrhythmias resulting from a loss 
of function of Nav1.5.134 Given the clinical importance 
of Nav1.5 in modulating the propensity for arrhythmia, 
a recent study evaluated the effect of NR and nicotin-
amide supplementation on Nav1.5 function.135 Unlike nic-
otinamide, an equimolar concentration of NR increases 
peak sodium current in a protein kinase C–dependent 
manner and reduces the late sodium current in neonatal 
rat ventricular cardiomyocytes through both acetylation-
dependent and -independent mechanisms. Initial in vivo 
results from healthy lightly anesthetized mice also show 
that NR supplementation improves cardiac electrophysi-
ology, as indicated by a shorter corrected QT interval.135 
Thus, future in vivo testing in clinically relevant arrhyth-
mia models may provide the grounds for the therapeutic 
use of NAD+ precursors against inherited or acquired 
arrhythmia.

In humans, a recent study found that cardiomyocytes of 
patients with atrial fibrillation show substantial DNA damage, 
which was associated with PARP1 activation.136 In agree-
ment with this observation, tachypacing was demonstrated 
to impair contractile function in different experimental atrial 

fibrillation models by inducing DNA damage, PARP1 hyper-
activation, and subsequent NAD+ depletion.136 Conversely, 
PARP1 inhibition replenished NAD+ levels, reduced oxida-
tive stress–induced DNA damage, and improved cardio-
myocyte contractility,136 indicating that PARP1 inhibition 
can reverse the progression of atrial fibrillation. Likewise, 
pharmacological inhibition of CD38 and CD157 prevents 
ouabain-induced Ca2+ overload and arrhythmias in vivo.137 
Knockout (KO) of CD38 or administration of the CD38 
inhibitor SAN-4825 also reduces isoproterenol-induced 
arrhythmias.138 In stark contrast, however, NAD+-induced 
recovery of sodium currents can be hindered by the CD38 
antagonist pelargonidin, raising the possibility that baseline 
CD38-mediated signaling is required for the antiarrhythmic 
actions of NAD+.133 Thus, interventions targeting CD38 in 
the setting of arrhythmia may need to strike a delicate bal-
ance between limiting CD38 hyperactivity while sustaining 
its baseline functionality.

Taken together, reduced levels and impaired redox 
balance of the cardiac NAD+ pool negatively affect the 
electric activity of the heart. Nonetheless, the exploration 
of dysregulated NAD+ homeostasis in arrhythmogenic 
cardiomyopathy is still in its infancy, requiring further 
research.

Pathological Cardiac Hypertrophy
Unlike exercise-induced physiological cardiac hypertro-
phy that is linked to increased NAD+, pathological car-
diac hypertrophy is associated with NAD+ decline in mice 
subjected to aortic constriction or treatment with hyper-
tension-inducing drugs.16,102 This effect was attributed 
to limited NAD+ biosynthesis on the basis of reduced 
NAMPT expression.16,102 Cardiomyocyte NAD+ levels are 
also reduced on coincubation with the prohypertrophic 
agent phenylephrine in vitro.102 On the contrary, exog-
enous NAD+ supplementation restores NAD+ levels and 
NAMPT expression in mice, which show reduced cardiac 
hypertrophy and fibrosis and improved serological mark-
ers of heart failure.102 Mechanistically, the cardioprotec-
tive effects of NAD+ are detectable in SIRT1+/– but not in 
SIRT3–/– mice, suggesting a causal role for SIRT3 in me-
diating the antihypertrophic effects of NAD+, at least in 
isoproterenol-induced pathological hypertrophy.102 More 
recently, SIRT7 has been also implicated in the cardio-
protective effects of NMN, at least in vitro.139 NMN also 
improves isoproterenol-induced cardiac hypertrophy, fi-
brosis, and dysfunction in vivo.103 Similarly, nicotinamide 
protects from cardiac hypertrophy in a rat model of ar-
teriovenous fistula–induced volume overload.104 In both 
models, the antihypertrophic effects of these NAD+ pre-
cursors are linked to suppressed oxidative stress. Along 
similar lines, pharmacological inhibition of PARP1 pre-
vents left ventricular hypertrophy in spontaneously hy-
pertensive Dahl rats,140 whereas CD38 KO renders mice 
more resilient to agonist-induced pathological hypertro-
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phy.141 It is interesting that increasing NAD+ levels by 
NAMPT overexpression in cardiomyocytes is sufficient 
to protect from isoproterenol-induced cardiac hypertro-
phy, dysfunction, and dilation.101 However, another study 
showed that Nampt+/– mice (lacking a copy of the Nampt 
gene) are also resilient to agonist-induced hypertrophy.72 
Here, NAMPT depletion was not cardiac-specific, and 
NAD+ levels were not reported.72 Thus, further research 
elucidating the precise function of NAMPT, especially 
beyond NAD+ production in the heart, is needed to rec-
oncile these apparently disparate observations.

NAD+ replacement therapy has also been tested in a 
more aggressive form of pathological hypertrophy, induced 
by transverse aortic constriction (TAC). Mice subjected to 
such pressure overload initially develop hypertrophic car-
diomyopathy, which progresses toward heart failure and 
ventricular dilation. Intraperitoneal administration of NMN 
to these mice significantly reduces hypertrophy, improves 
contractile function, and suppresses ventricular dilation 
and lung congestion.101 These effects are accompanied 
by a restored NAD redox balance and suppressed mito-
chondrial protein hyperacetylation.101 NR has also been 
tested in TAC mice, but failed to improve the NAD+/
NADH ratio.16 Accordingly, dietary NR supplementation 
did not reduce pathological cardiac hypertrophy or sur-
vival in these mice, although it modestly attenuated the 
decline in ejection fraction. A possible explanation for 
such a discrepancy between NR and NMN could reside 
in the route, dose, or timing of administration. That said, 
cardiomyocyte-specific NAMPT overexpression also 
yielded controversial results in mice subjected to TAC. In 
fact, NAMPT transgenic mice display exacerbated con-
tractile dysfunction at 4 weeks after TAC.105 It is impor-
tant to note, however, that NAMPT transgenic mice do 
not preserve high cardiac NAD+ on pressure overload, 
which might explain the lack of cardioprotection. It would 
be interesting to see whether supplementation with the 
NAMPT substrate nicotinamide would mitigate the con-
sequences of TAC in such NAMPT-overexpressing mice. 
On the flip side, in support of a protective role of NAMPT 
against pressure overload, Nampt+/- mice with reduced 
cardiac NAD+ levels are more susceptible to TAC-induced 
cardiomyopathy than both NAMPT transgenic and WT 
mice.105 Unlike NAMPT-overexpressing mice, Nampt+/- 
mice display systolic dysfunction within 2 weeks of TAC, 
and by 4 weeks, they already develop pulmonary conges-
tion, indicative of heart failure.105

In sum, NAD+ metabolism is clearly dysregulated 
in pathological cardiac hypertrophy. The effects of 
NAD+-targeted interventions are heavily influenced by 
the underlying cause of hypertrophy (TAC versus ago-
nist-induced), the precursor used (NMN versus NR),  
and the treatment regimen (preventive versus thera-
peutic), calling for more systematic studies that should 
focus on a realistic (therapeutic and pharmacological) 
setting.

Dilated Cardiomyopathy
DCM, which is characterized by a progressive decline 
in cardiac contractility and ventricular dilation, is a lead-
ing cause of heart failure with reduced ejection fraction. 
Although DCM commonly occurs as a complication of 
ischemic cardiac demise (discussed in Ischemic Cardio-
myopathy above), it can also develop because of genetic 
(nonischemic) causes.142 Thus, NAD+ metabolism has 
been also examined in genetic mouse models of DCM.

One such genetic model is the Lmna mutant mouse, 
which harbors a mutation in the lamin A/C encoding 
gene.143,144 The onset of DCM in Lmna mice correlates 
with a manifest decline in the cardiac NAD+ pool.24 Con-
sistently, NAMPT expression—on both a transcriptional 
and a protein level—is reduced, whereas that of NMRK2 
is increased not only in the mouse model but also in 
patients with Lmna mutations.24 Accordingly, dietary NR 
supplementation replenished NAD+ levels, partially res-
cued the deleterious cardiac phenotype, and delayed 
premature mortality in Lmna mutant mice. Furthermore, 
the use of a more therapeutic approach—in which NR 
treatment was initiated when cardiac function already 
started to decline—prevented further cardiac deteriora-
tion in these mutant mice. In contrast, intraperitoneal 
nicotinamide administration failed to increase NAD+ lev-
els or to confer any significant cardioprotective effects in 
Lmna mutants.24 This work strongly suggests that distinct 
NAD+ precursors are not equivalent in their therapeutic 
potency. Whether these differences may be explained 
by dosage, route of administration, pharmacokinetics, 
or potential off-target effects (outside of the increase in 
NAD+ pools) remains to be investigated.24

Similar to Lmna mutants, mice harboring a cardiac KO 
of the Srf gene coding for serum response factor (SRF) 
develop DCM and display cardiac NAD+ deficiency coupled 
to reduced expression of Nampt and a multifold increase in 
Nmrk2 mRNA species.16 Accordingly, intraperitoneal injec-
tions of nicotinamide failed to increase NAD+, whereas oral 
or intraperitoneal administration of NR efficiently restored 
cardiac NAD+ abundance. Importantly, NR supplementation 
to SRF mutant mice prevented cardiac dysfunction and dila-
tion. It is interesting to note, the cardioprotective effects of 
NR are not associated with any alterations in NAD+/NADH 
ratio, mitochondrial respiration, or SIRT1/3 activation in 
these mice. In fact, NR-treated SRF mice showed increased 
acetylation of the nuclear SIRT1 targets, FOXO1 and p53.16 
Hence, future studies should elucidate the mechanisms 
through which NR exerts its cardioprotective actions in the 
setting of DCM induced by Srf or Lmna mutations.

Another DCM model is the Friedreich’s ataxia car-
diomyopathy mouse model, which is induced by KO of 
frataxin (FXN).145 After developing an initial hypertro-
phic cardiomyopathy phenotype, FXN-KO mice typi-
cally develop progressive DCM and heart failure with 
reduced ejection fraction.145 At variance with Lmna and 
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Srf mutants, steady-state levels of NAD+ are not reduced 
in FXN-KO mice.25 However, Nampt transcripts are 
reduced, suggesting that NAD+ salvage reserve might 
be compromised.25 In support of this notion, bypass-
ing NAMPT by supplementing NMN to FXN-KO mice 
elevates NAD+ levels and preserves cardiac function.25 
Specifically, NMN improves load-independent measures 
of cardiac contractility and compliance in FXN-KO mice. 
NMN supplementation also improves myocardial effi-
ciency and bioenergetics in FXN-KO hearts.25 This effect 
is coupled to reduced glycolytic flux and lactate accumu-
lation, characteristic of heart failure in FXN-KO hearts. 
SIRT3 appears to be mechanistically involved in the car-
dioprotective effects of NMN, because double KO mice 
lacking FXN and SIRT3 are less protected by NMN than 
FXN-KO mice.25 That said, NMN did not reduce global 
mitochondrial protein lysine hyperacetylation in FXN-KO 
mice, and SIRT3 ablation unexpectedly attenuated some 
of the deleterious features of Friedreich’s ataxia cardio-
myopathy, including left ventricular wall thinning, myocar-
dial stiffness, and glycolytic intermediates accumulation. 
Thus, SIRT3 activation does not appear to be involved in 
all cardioprotective effects of NMN in FXN-KO mice.25

Taken together, these studies show that NMN and 
NR hold promise for the treatment of DCM and related 
heart failure with reduced ejection fraction. However, the 
available evidence remains ambiguous about how these 
NAD+ precursors modulate protein (de)acetylation in 
DCM. Given that patients with Friedreich’s ataxia show 
increased FXN mRNA expression and protein concen-
tration in response to high-dose nicotinamide,146 future 
randomized trials should also evaluate the clinical out-
comes of nicotinamide in these patients.147

Heart Failure With Preserved Ejection Fraction
Heart failure with preserved ejection fraction (HFpEF), 
which affects half of heart failure patients, still lacks 
evidence-based therapies.148 Given its ever-growing 
prevalence, along with a poor prognosis that is on par 
with several forms of cancers,148 HFpEF is considered 
one of the most pressing unmet medical needs. In this 
regard, 2 recent studies have provided strong evidence 
that NAD+ metabolism might be a promising actionable 
target to treat HFpEF.15,106 The first study demonstrated 
that human HFpEF is associated with reduced cardiac 
NAD+ content.15 Similarly, ZSF1 obese rats, a model 
of HFpEF and hyperphagia-induced metabolic syn-
drome,149–151 exhibit low NAD+ levels both in the heart 
and liver. It is remarkable that cardiac NAMPT expres-
sion was preserved both in humans and rats with HF-
pEF, suggesting that low steady-state NAD+ is attribut-
able to increased NAD+ consumption or low circulating 
levels of the NAMPT substrate nicotinamide, which was 
reduced both in rats and patients.15 Indeed, nicotinamide 
supplementation to ZSF1 obese rats restores cardiac 

and hepatic NAD+ concentrations while reducing car-
diac hypertrophy and end-diastolic pressure, ameliorat-
ing relaxation and passive myocardial stiffness, thus 
improving diastolic dysfunction, the hallmark of HFpEF. 
Accordingly, nicotinamide reduced lung congestion and 
enhanced exercise and cardiopulmonary functional ca-
pacity. Mechanistically, nicotinamide ameliorated myo-
cardial and skeletal muscle bioenergetics, correlating 
with reduced adiposity and a metabolic shift from glycol-
ysis toward fatty acid β-oxidation. Because  nicotinamide 
also improves diastolic function in nonobese rodent 
models of aging and hypertension,15 it has been pro-
posed that nicotinamide might exert cardiac-specific ef-
fects in addition to its (noncell autonomous) effects on 
general metabolism. Indeed, acetylproteome analysis of 
the heart revealed that 2 diastole-regulating proteins, ti-
tin and SERCA2a, were deacetylated upon nicotinamide 
supplementation.15 In vitro assays corroborate the func-
tional relevance of this effect because deacetylating titin 
and SERCA2a by recombinant SIRT1 protein improves 
cardiomyocyte passive tension and intracellular Ca2+ 
cycling.15,152 Further research efforts must determine 
which among the multiple titin acetylation sites that are 
modulated by nicotinamide is responsible for improving 
cardiomyocyte elasticity. Similarly, cardiac acetylome 
analyses by mass-spectrometric proteomics did not re-
veal any clear alterations in global protein acetylation in 
nicotinamide-treated rats in vivo. Future research should 
therefore focus on specific molecular targets of protein 
(de)acetylation, a procedure that might challenge the 
premise that hyperacetylation per se threatens meta-
bolic resilience in the myocardium.153

The second preclinical HFpEF study examined 
whether established HFpEF induced by the combina-
tion of HFD and chronic treatment with the NO synthase 
inhibitor N-nitro-l-arginine methyl ester can be reversed 
by administering NR.106,154 Indeed, after the develop-
ment of HFpEF, dietary NR supplementation restored 
NAD+ abundance, and improved cardiac remodeling as 
well as diastolic function, exercise capacity, and lung 
congestion.106 Again, the cardioprotective effects of 
increasing NAD+ did not correlate with any changes 
in total mitochondrial protein acetylation. However, tar-
geted protein analysis revealed reduced acetylation of 
very long-chain acyl-CoA dehydrogenase in NR-treated 
mice, coinciding with improved palmitoylcarnitine-medi-
ated mitochondrial respiration.106 Of note, the NAMPT 
activator, P7C3-A20, also increases NAD+, reproducing 
the cardiac functional benefits of NR in the absence 
of any improvements in obesity or insulin sensitivity in 
HFpEF mice.106 At odds with the previous study in which 
NAMPT protein levels were preserved in HFpEF,15 the 
hearts of both mice and patients with HFpEF exhibited 
reduced levels of NAMPT mRNA.106 These observa-
tions suggest a reduced reserve capacity to upregulate 
NAMPT and NAD+ biosynthesis in HFpEF.
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Taken together, NAD+ supplementation using nicotin-
amide or NR improves cardiac diastolic function through 
several mutually nonexclusive mechanisms. Pending fur-
ther confirmation in preclinical models, HFpEF may be 
considered as a promising indication for NAD+ replace-
ment therapies.

NAD+ SUPPLEMENTATION IN HUMANS
Historically, the most extensively studied NAD+ precursor 
in humans is NA, which is commonly referred to as nia-
cin. It is interesting that niacin was the first hypolipidemic 
agent shown to reduce mortality in humans.155 However, 
coadministration of niacin and statins failed to additively 
reduce residual cardiovascular risk in patients.108–110 Re-
cently, the effect of niacin on lipid control and cardiovas-
cular risk was reexamined in a meta-analysis of 119 clin-
ical trials.156 The authors found that niacin, administered 
as a monotherapy without statins, reduces the risk of car-
diovascular events, including acute coronary syndrome, 
stroke, and revascularization. However, they concluded 
that the available evidence is rather limited because only 
17 trials adequately examined the effect of niacin on lipid 
control and cardiovascular risk.156 Regardless, because 
niacin causes unpleasant flushing, is less potent in in-
creasing NAD+ levels than other precursors,23 and might 
worsen survival in statin-receiving patients,157,158 the in-
terest moved toward other NAD+ enhancers.

Clinical trials that evaluated NAD+ boosting strate-
gies other than niacin mostly focused on NR. Although 
these trials generally included small numbers of subjects, 
they demonstrated that NR supplementation is safe and 
does not elicit obvious adverse side effects, but does 
increase whole blood NAD+ levels.23,87,159 In fact, oral NR 
administration for 5 to 9 days (escalating dose up to 1 g 
twice a day from day 3) increases NAD+ levels, improves 
mitochondrial respiration, and attenuates proinflamma-
tory cytokine gene expression in peripheral blood mono-
nuclear cells of hospitalized patients with advanced heart 
failure with reduced ejection fraction.160 Along similar 
lines, NR enhances mitochondrial function and attenu-
ates the activation of the NLRP3 inflammasome in cir-
culating leukocytes extracted from healthy subjects.161 
In addition, oral NR (1 g daily) reduces circulating lev-
els of IL-5 and IL-6 in the skeletal muscle from healthy 
elderly volunteers,162 while inducing minor improvements 
in body composition and sleeping metabolic rate in 
healthy overweight or obese men and women.163 How-
ever, not all studies support the therapeutic potential of 
dietary NR supplementation. For example, no remark-
able improvement has been observed in skeletal muscle 
mitochondria,37 insulin sensitivity, or whole-body glucose 
metabolism in obese, insulin-resistant men treated with 
NR (1 g twice daily).164 Thus, the effect of NR supple-
mentation on mitochondrial health and systemic glucose 
homeostasis in humans remains uncertain.

In contrast with NR, only a handful of trials using 
NMN have been completed so far. The first human NMN 
study performed on healthy Japanese men reported 
that oral administration of NMN (100, 250, or 500 mg) 
is safe and triggers an increase in circulating nicotin-
amide metabolites.165 Although this study did not report 
changes in steady-state NAD+ levels, it confirmed that 
NMN does not cause acute adverse effects. More 
recently, another pilot study examined the safety and 
efficacy of chronic NMN administration in overweight 
or obese postmenopausal women with prediabetes.166 
This trial demonstrated that NMN supplementation (250 
mg daily for 10 weeks) increases NAD+ levels in circu-
lating PMBCs while improving insulin sensitivity as well 
as skeletal muscle insulin signaling. However, NMN did 
not reduce body weight or ameliorate body composition, 
skeletal muscle strength, or mitochondrial respiration. 
Although the salutary effects of NMN on insulin and glu-
cose homeostasis appear more appealing than those of 
NR,163,164 future head-to-head comparisons must confirm 
these differences in 1 single clinical trial.

Nicotinamide is another safe NAD+ precursor, which, in 
contrast with NA/niacin, does not cause flushing.22 Indeed, 
nicotinamide is well-tolerated at relatively high doses for 
months or even years of chronic administration.167 For 
instance, 12 months of oral nicotinamide supplementa-
tion (1 g daily) is safe and efficient for the prophylaxis of 
nonmelanoma skin carcinomas.168 In another rather large-
scale trial, nicotinamide was safely administered for 5 years 
at a dose of 1.2 g/m2 daily (up to a maximum of 3 g daily) 
to individuals at risk of type 1 diabetes, although without 
any clinical efficacy.169 It is more important to note that 
nicotinamide administration (1 or 3 g daily for 3 days) to 
patients undergoing cardiac surgery reduced the levels of 
the cardiac injury marker troponin T.170 Moreover, observa-
tional studies indicate that a diet enriched in nicotinamide 
(and NA) is associated with lower blood pressure and a 
reduced risk of cardiac-specific mortality in humans.15

A common denominator of all these studies is that 
oral administration of different NAD+ precursors is safe 
and tolerable, and augments NAD+ or its metabolites, 
although to a varying extent. In Table 2, we provide a 
comprehensive overview on currently ongoing trials 
dealing with natural NAD+ precursors and their pos-
sible effects on cardiovascular-relevant end points. 
These clinical trials have been inspired by rodent studies 
demonstrating that increasing intracellular NAD+ lev-
els may improve cardiovascular diseases. Nonetheless, 
several practical issues with relation to the administra-
tion of NAD+-regenerative therapeutics will need to be 
overcome, such as how to best deliver NAD+ precur-
sors (for instance by slow-release capsules, releasing 
their content in the ileum rather than in the stomach), 
at which dose and time of the day, taking into account 
chronobiological fluctuations of NAD+.171 Alternative 
 pharmacological strategies that elevate cellular NAD+ 
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Table 2. List of Ongoing Clinical Trials Testing the Safety and Efficacy of NAD+ Precursors Against Cardiovascular or Related 
End Points

Precursor
Regimen/
dosage

Disease/target 
population Study design

Trial 
phase

Estimated 
enroll-
ment

Follow-
up Study outcome(s)

NAD+ 
measure-
ment

Estimated 
completion

Trial acronym 
and identifier

NAM 3 g/d on 
the day of 
surgery and 
postsurgi-
cal days 1 
and 2

Patients under-
going on-pump 
cardiac surgery

Randomized, pla-
cebo-controlled, 
double-blind trial

2 304 3 mo Prevention of cardiac 
surgery–associated 
acute kidney injury

… June 2024 NACAM 
NCT04750616

2.5 g/d Women with 
early-onset pre-
eclampsia

Single group, 
open-label trial

2 25 7 d Changes in mean blood 
pressure

… July 2020 NCT03419364

Niacin Not speci-
fied

HFrEF Randomized, 
single (par-
ticipant)–blind trial 
with crossover 
design

2 12 … Effects on cardiac func-
tion and mixed venous 
oxygen saturation

… December 
2022

KETO-COX 
NCT04703361

Dose esca-
lation up to 
2 g/d

Healthy indi-
viduals

Single group, 
open-label trial

2 24 16 wk Changes in lipoprotein 
composition and func-
tion as well as vascular 
compliance

… July 2020 NCT02322203

NR Dose esca-
lation up to 
2 g/d

Patients with 
HFrEF sched-
uled for elective 
LVAD surgery

Randomized, pla-
cebo-controlled, 
double-blind trial

1 40 … Effects on myocardial 
mitochondrial function 
and morphology, pro-
tein and epigenetic 
modifications, as well 
as inflammatory mark-
ers in the heart and 
circulation

Myocar-
dial and 
whole 
blood 
levels

August 
2024

NRII 
NCT04528004

1 g/d Hypertension Randomized, pla-
cebo-controlled, 
double-blind trial

1 74 6 wk Changes in systolic 
blood pressure and 
arterial stiffness

… May 2021 The NEET Trial

NCT04112043

1 g/d Patients with 
moderate to 
severe chronic 
kidney disease

Randomized, pla-
cebo-controlled, 
double-blind trial

2 118 3 mo Changes in aortic stiff-
ness and arterial blood 
pressure

PBMCs September 
2024

NCT04040959

1 g/d (Pre)hyperten-
sive middle-
aged and older 
adults (SBP: 
120–139 
mm Hg)

Randomized, pla-
cebo-controlled, 
double-blind trial

2 118 3 mo Changes in systolic 
blood pressure and 
arterial stiffness

Whole 
blood

December 
2023

NCT03821623

1 g/d Peripheral ar-
tery disease

Randomized, pla-
cebo-controlled, 
double-blind trial

3 90 6 mo Effects on walking 
performance, physical 
activity, quality of life, 
and skeletal muscle 
phenotype

Skeletal 
muscle

April 2022 NICE 
NCT03743636

Dose esca-
lation up to 
2 g/d

(or maxi-
mum toler-
ated dose if 
<2 g)

HFrEF Randomized, pla-
cebo-controlled, 
double-blind trial

1 30 12 wk Safety and tolerability, 
cardiac function as well 
as mitochondrial func-
tion in PBMCs

Whole 
blood

June 2019 NCT03423342

0.5 g/d Young com-
pared with 
old volunteers 
with normal or 
prehypertensive 
blood pressures

Randomized, pla-
cebo-controlled, 
double-blind trial 
with crossover 
design

N/A 16 7 d Effects on blood lipids 
and vascular function 
after dietary high-fat 
intake

Whole 
blood and 
PBMCs

December 
2019

NCT03501433

1 g/d Healthy elderly 
females

Randomized, pla-
cebo-controlled, 
double-blind trial

N/A 48 6 mo Cardiopulmonary func-
tional capacity, physical 
performance, as well 
as skeletal muscle phe-
notyping

… December 
2022

NCT03818802

(Continued )
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content, for instance by inhibiting NAD+ consumption, 
have yielded promising preclinical results. However, 
future trials must establish their long-term safety profile, 
especially on the risk of infections and immunosuppres-
sion.172,173 Another important issue is the standardization 
of reliable biomarkers of NAD+ metabolism, includ-
ing quantitation of NAD+ precursors and metabolites 
in body fluids and tissues as well as that of proxies of 
their bioactivity that may include specific protein acety-
lation patterns, autophagy and mitophagy. Resolving 
these issues will be instrumental for the design of future 
NAD+-centered therapeutic interventions on cardiovas-
cular diseases and other age-related diseases.

PERSPECTIVES AND CONCLUDING 
REMARKS
A recent wave of intense research has transformed 
our understanding of NAD+ biology and led to new 
and evolving concepts on the biosynthesis, transport, 
catabolism, and functions of NAD+ in health and dis-
ease.1 Although this knowledge may have yielded novel 
targets to prevent or treat cardiovascular diseases with 
a remarkable number of patent applications (8778 as 
of September 11, 2021, according to the European 
Patent Office’s worldwide database), several obstacles 
need to be overcome to translate these findings into 
the clinical arena. Thus, future clinical trials need to be 
of much longer duration, include a follow-up beyond 
treatment discontinuation, involve larger numbers of 
patients, and consider adapting drug doses from rodent 
studies to human studies on a per-weight rather than 

on a per-surface basis.174,175 In this respect, quantifica-
tion of potential long-term adverse effects (eg, hepato-
toxicity and bleeding) will be critical to ensure that the 
administration NAD+ precursor administration at higher 
doses is clinically safe. Reported differences in bioavail-
ability and stability of NAD+ precursors have fueled the 
debate on the choice of the optimal NAD+ enhancer. 
Available evidence indicates that none among the natu-
ral NAD+ precursors is optimal for all indications. How-
ever, the lack of systematic direct comparisons among 
NAD+ precursors (NA, nicotinamide, NR, and NMN) at 
the preclinical and clinical levels precludes firm thera-
peutic recommendations. Given that NAD+ and its close 
metabolites can be subjected to continuous intercon-
version with a half-life in the order of minutes,22 future 
studies should measure NAD+ flux to explore the dy-
namics and kinetics of NAD+ biosynthesis, degradation, 
and metabolism in a tissue-specific manner.22,59 This 
approach combined with the advent of NAD+ biosen-
sors will allow for accurate NAD+ quantification in in-
tact tissues, cells, and even defined subcellular com-
partments.176,177 Dynamic monitoring of the entire NAD+ 
metabolome also will advance our understanding of 
inherited or acquired alterations in NAD+ levels and its 
related intermediates, help to optimize methods for rais-
ing NAD+ levels, explore the pathogenesis of defined 
cardiovascular diseases, and allow comparisons with 
the current standard of care for these conditions.

In conclusion, we emphasize that NAD+ and its pre-
cursors are pleotropic molecules involved in multiple 
processes that cannot entirely depend on the activity 
of 1 single target (Figure 4). For instance, although 
sirtuins are key downstream targets of NAD+, global 

NMN 300 mg/d Overweight and 
obese subjects 
with predia-
betes

Randomized, pla-
cebo-controlled, 
double-blind trial

N/A 56 16 wk Cardiovascular risk fac-
tors, including glucose 
tolerance and insulin 
sensitivity

… September 
2025

VAN

NCT04571008

300 mg/d Middle-aged 
and old healthy 
volunteers

Randomized, pla-
cebo-controlled, 
double-blind trial

N/A 66 2 mo Safety and efficacy in 
reducing systolic and 
diastolic blood pres-
sures

Whole 
blood

March 2021 NCT04228640

250 mg/d 
or

500 mg/d

Healthy volun-
teers with mod-
erate physical 
activity

Randomized, 
placebo-con-
trolled, double-
blind trial

N/A 150 38 d Muscle recovery, physi-
cal activity, and cardio-
pulmonary capacity

Whole 
blood

September 
2022

NCT04664361

400 mg/d Healthy volun-
teers

Exploratory, open-
label, single-arm 
trial

N/A 20 28 d Tolerability, pharma-
codynamics, and 
cardiovascular effects, 
including arterial blood 
pressure, heart rate, 
blood lipids

Whole 
blood

October 
2021

NCT04862338

We searched the US clinical trial registry (https://www.clinicaltrials.gov/) using terms “nicotinamide” and “cardiovascular disease” for pending or ongoing clinical trials 
of NAD+ supplementation that have yet to publish results (from database inception to May 2021). HFrEF indicates heart failure with reduced ejection fraction; LVAD, left 
ventricular assist device; N/A, not applicable; NAD+, nicotinamide adenine dinucleotide, oxidized form; NAM, nicotinamide; NMN, nicotinamide mononucleotide; NR, nico-
tinamide riboside; PBMCs, peripheral blood mononuclear cells; and SBP, systolic blood pressure.

Table 2. Continued

Precursor
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Disease/target 
population Study design
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Trial title or 
identifier
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 analyses of cardiac protein acetylation profiles in 
response to NAD+-replacement interventions, with 
the exception of NAMPT overexpression,101 failed to 
show clear-cut effects.15,16,25 Hence, future acetylation-
centric studies should rely on more refined analyses 
of specific protein targets. Furthermore, other NAD+-
modulated processes, like inflammation and autophagy, 
which are dampened or induced by NAD+, respectively, 
might be involved in the broad physiological effects of 
NAD+ precursors in vivo. Recently, a dynamic model 
has been proposed in which NAD+ influences its flux 
through mitochondrial pathways, improving oxidative 
phosphorylation without any involvement of sirtuins.178 
Deciphering the mechanisms underlying the mode of 
action of NAD+ in a cell type- and precursor-specific 

manner will be decisive for the future implementation 
of NAD+ targeting interventions.
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Figure 4. Cardioprotective mechanisms of NAD+.
NAD+ is a pleotropic molecule involved in multiple processes that do not entirely depend on the activity of a single downstream effector. Indeed, 
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bioenergetics, reduced oxidative stress, and attenuated hyperacetylation of mitochondrial or sarcomeric proteins, as well as reduced inflammation 
and increased autophagy activation. Thus far, overwhelming preclinical evidence indicates that NAD+-based therapeutics might be effective 
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However, these experimentally attested cardiovascular benefits await translation to humans. NAD+ indicates nicotinamide adenine dinucleotide, 
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